

Welcome to PhpBotFramework’s documentation!

Get started:

	Overview
	Features

	Requirements

	Installation

	Made with PhpBotFramework

	Authors

	License

	Quickstart
	Create a bot

	Answer messages

	Answer updates

	Answer the /start command

	Getting updates

	Database
	Connecting the database

	Broadcast message

	Logging
	BotName

	Chat logging

API methods:

	Chat_id
	withChatId

	useChatId

	Payments
	What are Payments API?

	Prepare the playground

	Configure Payments credentials

	Create an invoice

	Shipping & Checkout

Entities:

	Commands
	MessageCommands

	CallbackCommand

	AdminCommand

	MultiCharacterCommand

	Create an Inline Keyboard

	Inline Queries
	Results

	Sending the results

	Types

Indices and tables

	Index

	Module Index

	Search Page

Overview

Features

	Modular

	Flexible HTTP requests with
Guzzle [https://github.com/guzzle/guzzle]

	Fast and easy to use

	Implements getUpdates and webhook

	Command-handle system for messages and callback queries

	Easy inline keyboard creation

	InlineQuery cretion

	SQL Database facilities

	Localization

	Save status for interactive chats

	Upload local files

	Logging

Requirements

	Php 7.0 or greater

	Composer

Webhook requirements

	Webserver

	SSL certificate

Localization requirements

	SQL Database

	Redis database (Optional)

Installation

In order to install PhpBotFramework you need to install
composer [https://getcomposer.com]:

curl -sS https://getcomposer.org/installer | php

Then set the framework as a requirement for the bot and install the
dependencies:

php composer.phar require danyspin97/php-bot-framework
php composer.phar install --no-dev

Alternatively, you can set the depency in the composer.json of your
bot:

{
 "require": {
 "danyspin97/php-bot-framework": "*"
 }
}

After installing it, you need to require the Composer’s autoloader:

require 'vendor/autoload.php';

Made with PhpBotFramework

	MyAddressBookBot [https://github.com/DanySpin97/MyAddressBookBot]:
Try it on Telegram [https://telegram.me/myaddressbookbot]

	Giveaways_Bot [https://github.com/DanySpin97/GiveawaysBot]: Try
it on Telegram [https://telegram.me/giveaways_bot]

Authors

This framework is developed and mantained by Danilo
Spinella [https://github.com/DanySpin97] and Dom
Corvasce [https://github.com/domcorvasce].

License

PhpBotFramework is released under the GNU Lesser General Public License
v3 [https://www.gnu.org/licenses/gpl-3.0.en.html].

You may copy, distribute and modify the software provided that modifications are described and licensed for free under LGPL-3. Derivatives works (including modifications) can only be redistributed under LGPL-3, but applications that use the framework don't have to be.

Quickstart

Create a bot

<?php
// Require the Composer's autoloader
require 'vendor/autoload.php';

// Create the bot object
$bot = new PhpBotFramework\Bot("token");

Answer messages

$bot->answerUpdate["message"] = function ($bot, $message) {

 // Reply as an echo bot
 $bot->sendMessage($message->getText());

};

Answer updates

As for messages, answering other updates requires the assignment of a
function to Bot::answerUpdate["entity"].

The function assigned must take 2 arguments:

	$bot

	the bot object

	$entity

	the entity attached to the update

Example: answer all CallbackQuery removing the loading circle.

$bot->answerUpdate["callback_query"] = function ($bot, $callback_query) {
 $bot->answerCallbackQuery();
}

You can find all possible updates
here [https://core.telegram.org/bots/api#update].

Answer the /start command

// What the bot will answer?
$start_closure = function ($bot, $message) {
 $bot->sendMessage("Hello stranger. This is my start message");
};

// Register the command
$bot->addCommand(new Commands\MessageCommand("start", $start_closure));

For a complete list of Commands, checkout the Command List.

Getting updates

There are two mutually exclusive ways of receiving updates for your bot:
- getUpdates - Webhooks

getUpdates

At the end of your bot script add:

$bot->run(GETUPDATES);

Your bot will start asking updates to Telegram and will process them
using Bot::answerUpdate and Commands.

Webhooks

Warning: This method requires both a webserver and a SSL
certificate.

Add this line at the end of your bot script:

$bot->run(WEBHOOK);

Database

Connecting the database

PhpBotFramework uses a simple wrapper to handle the database.

Connection using the wrapper:

$bot->database->connect([
 'adapter' => 'pgsql',
 'username' => 'sysuser',
 'password' => 'mypassword',
 'dbname' => 'my_bot_db'
]);

Or if you connect using PDO, pass the PDO object to the framework to use
the facilities:

$bot->database->pdo = $yourPdoObject;

Then you can access your PDO object using:

$bot->getPdo();

Broadcast message

If you want to update your users with the bot changelog, or telling them an important news you can use the Database::broadcastMessage which will do the job for you:

$bot->broadcastMessage("Checkout my new bot @DonateBot.")

This method takes the same parameters as Bot::sendMessage.

For working the database must have a "User" table with a chat_id row.

Logging

PhpBotFramework implements logging features.

It automatically creates a logging in the bot folder if it is using getUpdates, otherwise it uses the syslog.

BotName

To change the bot name used in the log:

$bot->setBotName("MyBot");

Chat logging

In addition to file log and syslog you can setup a chat where all error messages will be sent:

$bot->setChatLog("35818591");

Chat_id

The framework saves the chat_id of the current user (for private chats), group or channel based on where the update comes from.

All the Bot API methods which don’t take $chat_id as a parameter will target the current chat.

To target another chat you can use:

	useChatId
- withChatId

withChatId

This framework method will call the requested Bot API method using the choosed chat_id, without changing the current one.

$contact_command = new PhpBotFramework\Commands\MessageCommand("contact",
 function ($bot, $message) {
 // This message will be sent to whom pressed /contact
 $bot->sendMessage("My creator has been called");

 // This message will always be sent to @another_username
 $bot->withChatId("31285239382", "sendMessage", "Someone is calling for you");
 });

useChatId

This method will execute all the logic inside assuming the chat_id is the one choosed instead of the current.

$bot->useChatId("25929619",
 function() use ($bot) {
 $bot->sendMessage("This is a new message");
 $bot->sendPhoto("logo.png");
 });

All methods inside the anonymous function will target the choosed chat_id.
After the method will be called, the current chat will be the same as before.

Payments

What are Payments API?

Recently, Telegram released the Payments API which allows bots (and developers) to receive money
from users without need to leave the chat.

The payments are managed by third-party services:

	Stripe [https://stripe.com/]

	Yandex.Money [https://money.yandex.ru/new]

	Payme [https://payme.uz/]

While the API makes easy for a developer to know if (s)he was paid or not,
it’s not the same for the users who doesn’t have no warranty.

PhpBotFramework 3.x has introduced the support to the Payments API and the usage is really straightforward.

Prepare the playground

You can enable Payments API for your bot directly from @BotFather.

Like always, Telegram explains in-depth how to do so and we can’t do nothing better
than link to its documentation [https://core.telegram.org/bots/payments].

Configure Payments credentials

PhpBotFramework comes with a method named setPayment which’s used to set the necessary
data used by the bot to receive money (the provider token and the money currency).

$bot->setPayment(getenv('PAYMENT_TOKEN'), 'EUR');

The money currency should be represented following ISO 4217 currency code.

Learn more here [https://core.telegram.org/bots/payments#supported-currencies].

Create an invoice

A Telegram invoice is a special message which includes a form the user needs to fill
in order to send money to the bot.

PhpBotFramework provides the sendInvoice method; here’s the basic usage:

$bot->sendInvoice('Donation', 'Basic Donation', 'basicDonation', ['Donation' => 1]);

Using the code above, you’re going to get something like:

[image: https://i.imgur.com/RqRq02I.png]
You can define various prices to pay:

$bot->sendInvoice('Donation', 'Basic Donation', 'basicDonation', ['Donation' => 1, 'Plus' => 1.5]);

And you can pass additional parameters to ‘sendInvoice’. Here [https://core.telegram.org/bots/api#sendinvoice]‘s the complete list.

$bot->sendInvoice('Donation', 'Basic Donation', 'basicDonation', ['Donation' => 1], ['is_flexible' => true]);

Shipping & Checkout

When the user fills the form and the payment is ok, we need a way to tell the bot what to do next.

PhpBotFramework integrates the answerPreCheckoutQuery method which takes the incoming
pre_checkout_query (managed through answerUpdate [https://phpbotframework.readthedocs.io/en/3.0-dev/quickstart.html#answer-messages]) and answer it by returning greetings, errors or any kind of response.

$bot->answerUpdate['pre_checkout_query'] = function ($bot, $pre_checkout_query) {
 // Telegram uses a custom way to define the amount of money handled.
 // For instance, 1 EUR is represented like 100.
 $money_received = $pre_checkout_query['total_amount'] / 100;

 // For logging purpose.
 echo "Received '$money_received EUR'";

 $bot->sendMessage('Thanks for your donation!');
 $bot->answerPreCheckoutQuery(true);
};

As we said, we can return an error if something goes wrong:

$bot->answerPreCheckoutQuery(false, 'I am too rich to allows other donations');

We can also return additional delivery costs if needed through answerShipping.

$bot->answerShipping(true, '', ['FedEx' => 3.99, 'USPS' => 4.20]);

Commands

When a command get triggered, the associated function get called.

Commands are checked in order of priority (based on the type of the
commands).

MessageCommands

MessageCommands get triggered when the message received contains a
bot_command at the start.

$start_command = new PhpBotFramework\Commands\MessageCommands("start",
 function ($bot, $message) {
 $bot->sendMessage("You just hit /start");
 });

CallbackCommand

CallbackCommands get triggered when an inline button containing the corresponding data is hit by the user.

$help_callback = new PhpBotFramework\Commands\CallbackCommand("help",
 function ($bot, $message) {
 // Edit the message which contains the inline button
 $bot->editMessageText("This message now contains helpful information");
 // Don't forget to call Bot::answerCallbackQuery to remove the updating circle in the button
 $bot->answerCallbackQuery();
 }
);

AdminCommand

Admin command are valid only for selected id.

$admin_command = new PhpBotFramework\Commands\AdminCommand("data",
 function ($bot, $message) {
 $bot->sendMessage("Important data sent here");
 },
 // user_id of admins
 [2501295, 25912395]
);

MultiCharacterCommand

MultiCharacterCommand get triggered by messages what contains the selected keyword, prefixed by one of the wanted characters:

 $about_command = new PhpBotFramework\Commands\MessageCommands("about",
 function ($bot, $message) {
 $bot->sendMessage("This bot was made by BotFather.");
 },
 ['!', '.', '/']);

Either the messages starting with ``/start``, ``.start`` and ``!start`` will trigger this command.

Create an Inline Keyboard

Inline keyboard are special objects that can be sent along with
messages.

Bot::$keyboard is a wrapper for inline keyboard creation:

// Answer /about messages
$bot->addCommand(new Commands\MessageCommand("about", function($bot, $message)
 {
 // Create an inline keyboard button with a link to a site
 $bot->keyboard->addButton("Link", "url", "example.com");

 // then send it with a message
 $bot->sendMessage("Visit our website!", $bot->keyboard->get());
 }
)
);

For more information and guides about Inline Keyboard have a look
here

All button added will be on the same row.
Use:

$bot->keyboard->nextRow();

to switch to the next row.

You can also add more buttons on the same row using Keyboard::addLevelButtons:

$bot->keyboard->addLevelButtons(
 [
 'text' => 'Button1',
 'callback_data' => 1
],
 [
 'text' => 'Button2',
 'callback_data' => 2
]
);

This method will automatically change row after being called.

Inline Queries

Inline queries have been added in January 2016.

The user can call your bot by simply writing its username in the chat and a query.

After having enabled the inline mode enabled (by sending /setinline to @BotFather) the bot will start receiving inline_query updates.

Use the method answerInlineQuery to asnwer these updates. It requires an array of results to show to the user.

Results

Let’s create the results:

$bot->answerUpdate["inline_query"] = function ($bot, $message) {

 $bot->results->newArticle("Result1", "This is the first result.");

 $bot->results->newArticle("Result2", "This is the second result.");

};

Important

Remember that the parameter $reply_markup must not be encoded in JSON.

If you cannot see the answer of the bots but you don’t get any error message neither, check the $reply_markup parameter.

Sending the results

When we have added all the results, we are ready to send them:

$bot->answerUpdate["inline_query"] = function ($bot, $message) {

 // Creation of the results
 ...

 $bot->answerInlineQuery($bot->results->get());

};

Types

The type used in the example is article, have a look here [https://core.telegram.org/bots/api#inlinequeryresult] for all types.

To create a result of a different type you can use addResult:

$bot->answerUpdate["inline_query"] = function ($bot, $message) {

 $bot->results->addResult([
 'type' => 'photo',
 'photo_url' => 'https://www.gstatic.com/webp/gallery/1.jpg',
 'thumb_url' => 'https://www.gstatic.com/webp/gallery/1.jpg'
]);

 $bot->answerInlineQuery($bot->results->get());

 };

To add multiple results simultaneously:

$bot->answerUpdate["inline_query"] = function ($bot, $message) {

 $bot->results->addResults([
 [
 'type' => 'photo',
 'photo_url' => 'https://www.gstatic.com/webp/gallery/1.jpg',
 'thumb_url' => 'https://www.gstatic.com/webp/gallery/1.jpg'
],
 [
 'type' => 'photo',
 'photo_url' => 'https://www.gstatic.com/webp/gallery/2.jpg',
 'thumb_url' => 'https://www.gstatic.com/webp/gallery/2.jpg'
]
]);

 $bot->answerInlineQuery($bot->results->get());

 };

Index

Create Command

Command rules are simply classes that inherit BasicCommand.

Let’s create a simple command that get triggered when messages start with the wanted string:

class MessageCommand extends PhpBotFramework\Commands\BasicCommand {

 // Type of the update which can trigger this command
 public static $type = 'message';

 // Type of the object to return
 // It must be an Entity class
 // The namespace is required
 public static $object_class = 'PhpBotFramework\Entities\Message';

 // Priority of this rule over other rules
 // for the same update
 // Rules with low value have high priority
 public static $priority = 1;

 // The constructor of the object
 // In this example we pass a string, $command
 // And a callable function, $script
 public function __construct(string $command, callable $script) {
 $this->command = $command;
 $this->script = $script;
 }

 // This function is called on each update of the corrisponding type (defined by $type)
 // $message (it can be called how you want) contains the update in the form of an array
 // Return true if the update triggers this command
 public function checkCommand(array $message) : bool {
 // Check if the text contains the wanted string
 if (strpos($this->command, $message["text"]) !== 0) {
 return true;
 }
 // We didn't find it
 return false;
 }
}

Now just tell the bot what to do when a message contains a bot command (like /start) using our newly created MessageCommand:

 _static/comment-close.png

_static/minus.png

_static/comment.png

_static/comment-bright.png

_static/file.png

_static/plus.png

nav.xhtml

 Table of Contents

 		Welcome to PhpBotFramework’s documentation!

 		Overview

 		Features

 		Requirements

 		Webhook requirements

 		Localization requirements

 		Installation

 		Made with PhpBotFramework

 		Authors

 		License

 		Quickstart

 		Create a bot

 		Answer messages

 		Answer updates

 		Answer the /start command

 		Getting updates

 		getUpdates

 		Webhooks

 		Database

 		Connecting the database

 		Broadcast message

 		Logging

 		BotName

 		Chat logging

 		Chat_id

 		withChatId

 		useChatId

 		Payments

 		What are Payments API?

 		Prepare the playground

 		Configure Payments credentials

 		Create an invoice

 		Shipping & Checkout

 		Commands

 		MessageCommands

 		CallbackCommand

 		AdminCommand

 		MultiCharacterCommand

 		Create an Inline Keyboard

 		Inline Queries

 		Results

 		Sending the results

 		Types

_static/down.png

_static/up.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/up-pressed.png

